The Full Story

Hi! I’m Will and I created a passive 5 figure passive income, within 5 years, through SEO and an effective blogging strategy. I share my incites exclusively on Ask Will Online.
dark

# Calculating the Radius of a Geostationary Orbit

To calculate the radius of a geostationary orbit, the centripetal force must equal the gravitational force on the satellite or mass.

Through the use of re-arranging the above equation, we can come to the equation:

r³ = G (m2) T² / 4π²

We  know that (m2) is the mass of the earth at 5.98×10^24 kg, T is the time period and G the universal gravitation constant at 6.67 x10^-11 kg^-2 .

## Radius Of A Geostationary Orbit

We know every bit of information in the above equation to work out the radius of a geostationary orbit. The time period will be 24 hours which is 86400 seconds. Therefore, for a geostationary orbit,

r = 4.23×10^7 metres.

However this is the radius to from the center of the Earth. Therefore, we will need to deduct the radius of the Earth from this number: the height of the satellite from Earth = r – r(E) where r is the distance of the satellite from the center of the Earth and r(E) is the radius of the Earth.

From this, the height of a geostationary orbit above the earth is 3.6×10^7 meters, with a radius of orbit of 4.23×10^7 m (from the center of the earth).

## Summary

• A geostationary orbit is an orbit which is fixed in respect to a position on the Earth. Therefore, the time period will always be 24 hours.
• From combining the centripetal force, gravitational force and basic velocity force equations, we can deduce that the radius required for a geostationary orbit is 3.6×10^7 meters from the surface of the earth.

1. Chris January 7, 2022
2. Alfonso Tepedino February 9, 2022
3. William Green May 22, 2022

## Bits, Bytes and Binary Codes

All images and every digital sounds are made from ‘0’s and ‘1’s. Each one of these digits is…

## All You Need To Know About Momentum

In theory, every moving and colliding objects works through momentum. The momentum of an object can be calculated…

## Circular Motion and Centripetal Force

Circular motion is caused by an unbalanced force acting towards the center of the circle. This force is called the centripetal…